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Abstract 

Shannon ' s  ent ropy is used for the formula t ion  of  the uncer ta in ty  relation. Two concrete 
examples  are solved: the  ease o f  dynamical ly  commut ing  cont inuous  observables, and 
the case of the  h/2 spin projections. 

1. Introduction 

It is recognised that the mathematical base of the uncertainty principle rests 
upon the statistical dependence of non-commuting quantum observables, 
known as physical random variables (Majernlk, 1970). 

This dependence is mathematically given by a set of conditional probabilities. 
In quantum mechanics the dependence is usually known, being determined by 
transformation rules between different representations of a state vector (unitary 
transformations). Such knowledge allows us to express one of the measures of 
statistical dependence by means of the so-called uncertainty relation. For the 
formulation of the uncertainty relation statistical dispersions are used 
(Heisenberg, 1930; Jackiw, 1968). We shall call this formulation the standard 
one, in order to distinguish the other possible expressions of the statistical 
dependence among the observables. 

There are no deeper mathematical or physical reasons for expressing the 
statistical dependences in the standard form. The use of dispersions of observ- 
ables can, perhaps, be justified by tradition (an estimation of the accuracy of a 
measurement or an estimation of fluctuations etc.) and also by the fact that 
the probability distributions of values of sufficiently punctually determined 
quantum observables are similar to the Gaussian probability distribution 
which is completely given by the average value-the mathematical expectation 
and by the dispersion. 
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In order to determine the statistical dependence of observables we can use 
other and often more general and convenient measures of the random variables 
constructed in probability theory. These measures can be the functions of the 
random variables and elements of a corresponding probability distribution, 
for example, the statistical moments or the functions of elements of the 
probability distributions only-so-called measures of the probability uncer- 
tainty, for example, Shannon's entropy. 

As to the former measures, if they are used, for instance, even higher 
statistical moments centred according to the average value (with respect to 
the possibility of  the odd moments being negative and with respect to the 
fact that the average values have an exceptional meaning in quantum mechanics) 
than we obtain by means of the variational method analogous to that developed 
by Jackiw (1968), awkward operational equations which attain their simplest 
form in the standard case. The present author believes that knowledge of the 
solution of a particular non-standard equation can give nothing new. Some- 
thing new could perhaps be gained by knowledge of the solutions of all equa- 
tions but, as we know, at the present time such solutions are not available. 
Thus if we want to use statistical moments to express measures of the uncer- 
tainty it is more convenient to use dispersions. There are, however, objections 
to the use of the dispersions as measure of the uncertainty of the probability 
distributions. If we have, for instance, probability distributions not of Gaussian 
form or even with some different maximums the dispersion becomes an unsuit- 
able measure of the uncertainty. This can be illustrated by an instructive and 
simple mathematical example. Let us consider a probability distribution deter- 
mined by its density: 

/N  a<~x<<.b 

P(x)  = b < x  < c (1.1) 

d < x <  +oo 

where N--- d - c + b - a. We define some new parameters 

L 1 = b - a  L2 = d - e  

determining the length of the regions of the non-zero probability density, 

T = (a + b + c + d)/4 

characterising symmetry of their locations, and 

L = (cl + e - b - a ) / 2  

referring to a mutual distance between the centres of the regions of the non- 
zero probability density. Then the dispersion of a random variable x is 

( ( X  -- ( X ) ) Z ) = L  z L1L2 (L1 +L2) 2 + 1-!,2(L12 - L 1 L  2 +L2 2) (t.2a) 
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As we see result (1.2a) contains an unsuitable dependence on the parameter 
L - i t  diverges as L 2 i fL ~ oo. 

Another disadvantageous feature of the dispersion appears in the case of 
discrete probability distributions. The uncertainty product can attain zero 
minimum even when one of the distributions is not absolutely localised, i.e. if 
the value of one of the observables is not precisely determined. The uncertainty 
or the statistical dependence is just characterised by the lower bound of the 
uncertainty product and in the above-mentained case this characterisation 
becomes meaningless. 

We shall try to remove the former difficulties by means of the probability 
entropy of an observable. The probability entropy can be defined as a natural 
measure of the uncertainty of a probability distribution (Jaynes, 1957 ; 
Fadejev, 1967). Let us recall some definitions and features of this entropy 
(Jaynes, 1957; Fano, 1959; Renyi, 1962). If the values x E X of the random 
variable X are realised with probability P(x) then the entropy of the 
probability distribution P(x) is 

W ( X ) = -  ~ P(x) InP(x) (1.3) 
x E X  

One of the characteristic properties of the entropy consists in the fact that 
the larger the uncertainty of a probability distribution the larger is its entropy. 
For the continuous observable we take the entropy as 

P(X) = - f P(x) In P(x) dx (1.4) 
X 

where P(x) is the probability density. Although the entropy (1.4) has not all 
the characteristics of the entropy (1.3) it can still be used as a (differential or 
relative) measure of the uncertainty. The value of the entropy (1.4) of an 
absolutely localised probability distribution, described by the probability 
density P(x) = ~(x - x ' ) ,  by definition, can be equal to _oo (W(X) = _o~). We 
note that the entropy of this distribution is not defined because the In 6(x) is 
not defined (Bremermann, 1965). In reality, there are no absolutely localised 
(continuous) probability distributions but only distributions very similar to 
them. TheSe distributions, as well as the distribution P(x) = 6(x - x ' ) ,  can 
have the arbitrary accuracy approximated by the Gaussian one and, limiting 
the parameter determining the dispersion to zero, we obtain W(X) = __oo 

In order to make a comparison we give the entropy (1.4) of the distribu- 
tion (t .1) 

W(X) = In (Z 1 +Z2)  

which is independent of the parameter L. 

After some preliminary notes, we devote ourselves to the study of the 
uncertainty principle as formulated by means of the probability entropy. At 
first we formulate the entropic uncertainty relation in the general case. We 
then concentrate upon two concrete examples: the case of the canonically 
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conjugate observables in the Weyl sense (Garrison & Wong, 1970) (having a 
continuous spectrum of eigenvalues) and the case of spin variables (having a 
discrete spectrum of eigenvalues). 

2. Entropic Uncertainty Relation 

For the formulation of the uncertainty relation we shall use the so-called 
a priori entropies. Let us consider two observables F and G, We denote the 
entropies of the observables as W(F) and W(G). We shall study the sum 

W = W(F) + W(G) (2.1) 

i.e. the sum of the uncertainties. As in the standard case, we are interested in 
the lower bound of the uncertainty sum (2.1) and in the state belonging to 
this bound- the  optimal state. The lower bound of the sum (2.1) can never 
be less than 

Wmin = IYF, min + WG, min (2 .2)  

where W~; min and WG, min are the minimal values of the a priori entropies (in 
the case of a continuous spectrum they are equal to - ~  and in the case of a 
discrete spectrum they are equal to zero). The uncertainty sum (2.1) can 
attain its minimum value (2.2) if the observables F and G are statistically 
independent of each other, i.e. if their operators commute with each other. 
However, the value (2.2) can also be attained if the observables F and G are 
statistically dependent and there exists a state vector which is an eigenvector 
of both operators F and G simultaneously. This is impossible if the commutator 
IF, G] is a (non-zero) c-number. Since the entropy of an absolutely localised 
probability distribution is always less than the entropy of any other distribu- 
tion the case referred to in the introduction can never occur, namely, the case 
of the discrete spectrum where the dispersion of one observable is zero and the 
dispersion of a second one is non-zero, therefore the uncertainty product 
equals zero. If the probability distributions are continuous, the sum (2.1) 
could have a drawback if a state vector exists which is an eigenvector, for 
instance of the operator F, i.e. W(F) = - ~  and 1 W(G) I < ~.  Then the sum 
of uncertainties (2.1) would attain its minimum W = - ~ .  

We shall call the sum of the uncertainties (2.1) completed by a really 
attainable minimum the entropic uncertainty relation. 

We now derive equations for the searching minimum of the sum of the 
uncertainties. For the remainder of this section the symbol 2 means summa- 
tion or integration in the case of discrete or continuous distributions, respec- 
t ively. The eigenvectors and the eigenvalues of the operator F we denote by 
I f  and f ,  respectively. Similarly for the G operator, we have Ig and g. The 
state of a quantum mechanical system is described by the state operator 

~= ~ l~>co= <c~l (2.3a) 

Tr (t~) = 1 (2.3b) 
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The probability (in the case of a continuous spectrum the probability density) 
that the observable F has a value f i s  

P(f) = ( f l ~  If) = E (fle~) ¢o,~ (~ l f )  (2.4a) 

and similarly 

P ( g ) = ( g l ~ [ g ) =  Y. ( g l a ) c o ( a l g )  (2.4b) 
OL 

Inserting equations (2.4) into equation (2.1) and using the variational method 
with condition (2.3) we find 

- E ( f [ a ) ( a [ f ) l n ( f [ ~ [ f ) -  E ( g [ a ) ( ~ [ g ) l n ( g ] ~ [ g ) - W = O  (2.5a) 
f g 

- ~ If)co~(a If) In ( f l~  If) - ~ Ig)coc,<a Ig)in (g I~5 Ig) - Wco~lo~) = 0 
; g (2.Sb) 

These equations can be written in the following form 
aW 

= W (2.6a) 

8W 
- Woo a [a ) (2.6b) 

a<~l 

The calculations are usually made in some actual representation. If we choose, 
for instance, the f-representation then the state vectors ]/3) must be changed 
by 

[/3)= E [f)( fI f l)  
f 

and the variational variables are co~ and (a  If). Equation (2.5a) does not 
change and equation (2.5b) is now 

-coc~(f[~) In ( f[~ If) - ~ ( f [g )w~(g[a )  tn (gtP [g) - Wco~(flol) = 0 
g (2.7) 

Next, for the sake of simplicity, we confine ourselves to the pure states. 

3. Entropie Uncertainty Relation for the Canonically Confugated 
Observables in the Weyl Sense 

Canonically conjugated observables in the Weyl sense are, for instance, the 
coordinate x and the momentum p of a free particle in one dimension. As is 
known, all canonically conjugate observables in the Weyl sense are equivalent 
to them (Garrison & Wong, 1970; Von Neumann, 1932). 
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We use equation (2.7) and calculations are made in the x-representation, 
i.e. F = x and G = p = - ihd/dx .  Since only the pure states are studied, the 
index o~ is left. We insert the following expressions into equation (2.7): 

( x l ~ >  = ~ ( x )  = ~(x)  

(p ] a )  = 'I '~(p) = '/s(p) 

(x l P ) = (2rrfi) -1/2 exp (ipx/h) 

<PI~>= S dx<plx><xlce> 

and thus obtain the following system of equations: 

- ~ ( x )  in ~*(x)~(x)  - ( 2 ~ )  -1/~ f exp (ipx/h)'lr(p) In ~*(p)~I,(p) dp 
- - o o  

= w e ( x )  (3.1a) 

',Is(/)) = (2rrfi) -1/2 ~ exp ( - i p x / h ) ~ ( x )  dx (3.1b) 
- - a o  

Since these are difficult to solve we have found, experimentally, that all wave 
functions which minimize the standard uncertainty relation also exaggerate 
the entropic uncertainty relation, i.e. they are solutions of equations (3.1). 
These functions in x-representation are 

~o(x) = (B/701/4 exp [ir - (ReA)2/2B] exp [ - ( B / 2 ) x  2 + Ax] (3.2a) 

and in p-representation are 

~ ( p )  = (B/rr)~/4(2rrh)-l/2 exp [ir - (Re A)2/2B] exp (A - ip/h) 2 

B > 0  I m r = 0  (3.2b) 

The fact o f r  being real not only follows from the normalisation condition 
but also from the non-linearity of equations (3.1). The value of the uncertainty 
sum (2.1) belonging to function (3.2) is 

W = in rr eli (3.3) 

and is independent of the parameters A, B and r. Since we do not know 
whether the functions (3.2) represent all solutions of equations (3.1), we 
cannot determine whether they minimise W. In spite of this we hope that the 
uncertainty relation 

wOO + W(P) >~ In rr eh (3.4) 

is valid, at least for some class of  the wave functions. In order to promote this 
supposition, we can show that there exist functions to which belong a larger 
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value of IV than that of equation (3.3). Such functions, for example, in the x- 
representation, are 

qO(X) = a-1/27r-1/4(xla) exp ( -x2/2a 2) (3.5a) 

and in the p-representation 

~(p) = -i(a/h)l/27r-1/4(pa/h) exp (-p2s2/2h2) (3.5b) 

where a is an arbitrary real non-negative parameter. To this function belongs 
the following value of IV: 

IV = ½ In rrh + ~ + C + In 4 > in 7r eh (3.6) 

where C is Euler's constant. In the calculations we have used (Grebner & 
Hofreiter, 1950, formulae 324, 83a and 411, 7c) 

f e-Xx u In x dx = P(u)~0(u) 1 

o 

~(1/2) = - C -  In 4 

We are not able to calculate exactly the integral of  equation (1.4) of the 
entropy and the integral in equation (3.1a) even for the simplest quantum 
mechanical examples. Therefore we try to seek an approximation of the 
lower bound of W. To that purpose we use the generalised information energy 

~ ( x ) =  f LP(x)] 2 & 
(x) 

originally defined for discrete probability distributions (Vajda, 1967). 
We obtain the following approximation 

(3.7) 

w = w(x)  + w(e) = - f l~,(x) 12 in I~(~) 12 ax - j" t ~(p)  12 in I'~(P) ? ap 

= - j" I so(x) IZ I ~Co) 12 In I ~(x)21 qffp)12 

. & c t p > ~ -  f i ~ ( x ) f 4 1 . ( p ) l ~ & @ -  - _  I I~'(x) f 4 ~ -  f f . ( p ) j 2 @  

= - E ( x ) . E ( e )  = - E  

W = W(X) + W(P) >>- - E ( X ) .  (e) = - E  (3.8) 

This approximation, of course, is only meaningful in the case of continuous 
probability distributions when the entropy can be negative. The minimum of 
- E  is then one of the approximations of the lower bound of I4I. As above, we 
use the variational method to determine the extremes of E. We obtain the 
following equations 



80 

E(P)v*(x)v 2 (x) + E(X) ( 2 ~ )  -1/~ 

,~(p) = ( 2 ~ ) - ~  
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~ e x p  (ipx/h)qt*(p)qr2(p) dp 
- - e r a  

= 2E(X) .R(P)~, (x)  

exp (-ipx/h)¢(x) dx 
- - o o  

(3.9a) 

(3.9b) 

Unfortunately the system (3.9) is again very complicated. We do not know its 
solution. 

Since the harmonic oscillator eigenfunctions are of great significance in 
physics and also represent the stationary states of the standard uncertainty 
relation, we approximate the lower bound of their entropic sum by means of 
the approximation (3.8). We expect that E will increase and W will decrease 
with increasing n since the more the harmonic oscillator is excited the smoother 
is the wave packet. The wave functions of the harmonic oscillator, in the x- 
representation, are 

~n(X) = (2nn! 7rl/2xo)-l/2Hn(x/Xo) exp (-xZ /2xo) 

and in the p-representation 

(3.10a) 

where 

~n(P) = (-i)n(2nn! rrl/2po)-l/2Hn(p/po) exp (--pZ/2Po) (3.10b) 

XoPo = ¢/ (3.10c) 

must be valid. Information energies of the probability distribution are 

En(X)= S [~°n(X)4 dx=xolln (3.11a) 
4 0 0  

En(P)= ~ [~n(p)[4dp=poaIn (3.11b) 
- -  o o  

In =(2nn!rrl/2) -2 f [Hn(x)]4 exp(--2x2)dx (3.12) 

and the product E is 

E.  = E . (X)  .E.(P) =4~-~q . )  2 (3.13) 
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The value of  the integral I n (3.12) is (Appendix (A.6)) 

) In = (27r)1/2n! ~-~ [(1 - t ) -a/2F(1/2,  1/2; 1; t)] 
t=O 

1 ~ ( 2 n - 2 k ] 2 { 2 k ] 2 2 k  (3.14) 
=(2zr) ' /224n k=O\ n k ] k k ]  

The values of  In for n = 0, 1 . . . .  , 10  can be found in Table 1. We shall now 
show that In and En, too, are bounded for all n. Let us denote 

P(+l/2)  
a(n) = (3.15) 

p(1/2)p(n + 1) 

TABLE 1. Values for n = 1 are approximate 

n (27r)1/2I n hVn 

0 1 ] 
1 0.75 0.5625 
2 0.6406 0.4104 
3 0.5742 0-3297 
4 0-5279 0-2787 
5 0.4930 0.2430 
6 0-4652 0.2164 
7 0-4426 0.1959 
8 0-4235 0.1794 
9 0-4071 0-1657 

10 0-3927 0.1542 

Then 

n +1 /2  
a(n + 1) = - - a ( n )  < a ( n )  

n + l  

a ( O ) =  1 a ( n + l ) K a ( n )  n = 0 , 1  . . . .  

n -+ lim - a (n ) = O 

The integral I n can be written in terms o f a ( n )  as 

/2 ?t 

(2rr) lnI  n = ~ a2(n - k )a(k )  <~ ~ a(n - k )a (k )  = Sn 
k=O k=O 

(3.16) 

(3.17a) 
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We define function S(t)  for I t [ < 1 

n 

S ( t ) =  ~ Sn tn= ~ 
n = O  n = 0  k = O  

a(n - k )a(k) t  n = = [(1 - t)-1/2] ~ 

= ( l - - t )  -1 = ~ t n (3.17b) 
/7=0 

From here it follows that S n = 1 and from (3.17b) it follows that 

0 < I  n <~ (2/r) -1/2 (3.18) 

From equations (3.8) and (3.13) we obtain 

O <~En = En(X).En(P) <~ t/¢i 

If(X) + W(P)/> - 1/¢/ (3.19) 

Thus it is shown that the sum of the entropies W of the pure states of the 
linear harmonic oscillator has lower bounds no less than - 1/h. So there exists 
the set of an infinite number of functions satisfying the uncertainty relation 

W(X) + W(P) >~ - 1/h (3.20) 

4. Entropic Uncertainty relation for Spin Variables 

As a second example the entropic uncertainty relation in the case of a 
discrete probability distribution is calculated. In this case the significance of 
the new formalism just excel because of the definition of the entropy. Let us 
consider a quantum mechanical system of spin hi2. The projections of the 
spin gz to the axes x and z of the cartesian coordinate system are represented 
by the operators 

ax=-2 1 = ~  _ (4.1) 

The state vectors are the two-component spinors 

' ~t') = ( a : )  a (4.2) 

normalised to unity 

aTal +a~a2 -- 1 (4.3) 

In order to stress the advantage of the entropic uncertainty relation, we shall 
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first of  all study the standard uncertainty relation. Let us, therefore, minimise 
the uncertainty product 

U ( a l .  a=) = ( (6x  - ( 6x ) )2)((Oz - (6z))  2) (4.4) 

Using equations (4.1) and (4.2) we obtain 

¢i 4 
V ( a  1 . a2)  = ~ [I  - (a~a 1 --  a~a2)  2] [l  - (a~a 2 + a l a ~ )  2] (4.5) 

We shall now introduce new variables (with respect to the normalisation 
condition (4.3)) 

( l  1 = r e i~1 a z = x / ( t  - r 2) e i~°~ ~p = ¢1 - ¢2 (4.6) 

and after substituting them into equation (4.5) we have 

fi4 
U(r,  q )  =--~ r z (1 - r 2) [1 - 4r 2 (1 - r 2) cos 2 ~] (4.7) 

The necessary conditions for the extreme points of  this function are as 
follows: 

~U = 2.h4r4(1 _ r2)2 cos ¢ sin ¢ = 0 (4.8a) 

OU 4i 4 
Or =-4- r(1 - 2r2)[1 - 8r2(1 - r 2) cos 2 ¢] = 0 (4.8b) 

The physically allowed roots of  equations (4.8) are 

r = 0 ~ arbitrary 

r= l&/2 ¢ = 0, 7r/2, 3~r/2 

- -~) - ' -  0 - 9 2 3 8 8 5 . . . ¢ = 0 ,  rr 

(4.9a) 

Limit points must also be considered. 

r = 1, ¢ arbitrary (4.9b) 

The values of  the uncertainty product (4.8) and the vectors belonging to the 
points (4.9) are 
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U - ,0  64 

4~ 4 

u[1/~/2, o] = o 

U(1/~/2, ~) = 0 

U(1/~/2, 1r/2) = 1--6 

U(1/X/2 , 3rr/2) 16 

U + , rr 64 

BRANISLAV MAMOJ KA 

I ~ )  = ~--~ 

'(:) 
1(:) 

U(1, ~0) = 0 ]xP)= (10) (4.10) 

Thus the following standard uncertainty relation is valid 

0 <~ ( ( o  x - ( Ox))2)((Oz - ( Oz ))2) ~.h4/16 (4.11) 

It attains its lower bound for eigenvectors of the operators Ox and Oz and its 
upper bound for eigenvectors of the operator oy. We see that in spite of the 
fact that there does not exist any vector which represents the eigenvector of 
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both operators ax and az the standard uncertainty relation can attain its zero 
minimum. This is a consequence of the fact that one dispersion is equal to 
zero whereas the other is non-zero and finite (as has already been mentioned 
in the introduction.) As we know, the entropic uncertainty relation is free 
from this defect; this will be shown in the following example. 

Let 

lq~)= (al  t (4.12) \a2/ 

be a spinor in the az-representation. We denote eigenvectors of the operator 
oz as follows 

Thus the spinor (4.12) can be written in the form 

]qs) = a l l z l )  + a2[z2) (4.14) 

Similarly, we denote eigenvectors of the operator cr x as 

It is known from the theory of representations that 

Ize> = ~ lxj>(xjlzi> i , j=  1,2 (4.16) 
i 

Thus the spinor (4.12) is in the ax-representation 

Iqr) = ~ ai(xj ]zi)[xj) (4.17) 
i,] 

where the transformation matrix is 

(x]lzi)=[ 1/x/2 1/%/2t (4.18) 
~1/X/2 -1/42] 

Finally, we have the concrete form of the spinor (4.12)in the ex-representa- 
tion 

I ~t-t > = ~ 1  [ 6~1 +a2 t (4.19) 
X/21a 1 - a 2 ]  
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Thus we obta in  for the sum of  the en t ropies  in bo th  represen ta t ions  

I4/= W(ox )  + W(oz) = - a ~ a l  lna~aa  - a~a2 l n a ~ a 2  

1 . a2) In ½(a~ +a~)(al +a2) 
1 * -- 2(a I -- a2*)(a 1 -- a2) In ½(a~ -- a ~ ( a  1 -- a2) (4 .20)  

or, using the variables (4.6),  

W = - r  2 In r e - (1 - r 2) In (1 - r 2) -- ½(1 + 2rx/ (1  - r 2) cos ~o) In ½(1 

+ 2 rx / (1  - r 2) cos ~o) - ½(1 - 2 r~ / (1  - r 2) cos ~o) In ½(1 

- 2 r~ / (1  - r 2) cos ~0) (4.21) 

The necessary condi t ions  for the ext remes  are 

O___W = r ~ / ( 1  - r 2) sin ~0 In 1 + 2 rx / (1  - r 2) cos 
~.0 1 - 2 r~ / (1  - r 2) cos ~o = 0 (4.22a)  

OW i - 2r  z 
- -  = - 2r in r z + 2r In (1 - r 2) - ~/~"1 r2.) cos ~o in 
Or 

= 0  

1 + 2 rx / (1  - r  2) cos 

1 - 2 rx / (1  - r 2) cos ~0 

(4 .22b)  

The physica l ly  a l lowed roots  o f  equa t ions  (4 .22)  are all points  (4 .9a)  and,  o f  
course,  l imi t  po in ts  (4 .9b)  mus t  also be considered.  We have ascer ta ined by  
use of  the c o m p u t e r  tha t  there  are no  other  physica l ly  a l lowed roots  o f  
equa t ions  (4.22).  Subs t i tu t ing  the values (4 .9)  to  the state vectors  (4 .10)  
in to  (4 .21)  we obta in  

W(O, ~o) = W(1, ~p) = W(t /%/2,  O) = W(1/%/2, 7r) = In 2 -'- 0 , 6 9 3 1 4 7 . . .  

_ _ ~ i  in (3 + X,/2) -'- 1 ,029504 < 2 in 2 = l n  8 ~ 2  " " " 

W(1/~/2 ,  rr/2) = W(1/~/2 ,  3rr/2) = 2 In 2 - 1 , 3 8 6 2 9 5 . . .  (4 .23)  

Therefore  the fol lowing en t rop ic  unce r t a in ty  re la t ion is valid 

In 2 ~ W(aa) + W(oz) ~< 2 in 2 (4.24) 



ENTROPIC UNCERTAINTY RELATION 87 

or, if in the definition of the entropy log2 is used instead of in, 

1 < W(Ox) + W(Oz) <~ 2 (4.25) 

The entropic uncertainty relation (4.24) as well as the standard one (4.I 1) 
attains its minimum for eigenvectors of the operators Ox and cr z and its 
maximum tor the eigenvectors of the operator oy. The entropic uncertainty 
relation (4.24) is evidently more adequate than the entropic uncertainty relation 
for continuous probability distributions which only consist of the 'regularised 
parts' of the entropy. The entropic uncertainty relation (4.24) is based on the 
entropies of discrete probability distributions which can immediately be 
defined as a natural measure of the uncertainty. 

5. Conclusion 

The entropic uncertainty relation represents no generalisation of the 
standard relation but, in principle, a new formulation using the entropy as a 
natural measure of the uncertainty of probability distributions. Practical 
applications of the entropic uncertainty relation are, however, considerably 
difficult because of the mathematical complications and for the reason that the 
entropy is not usually used in experimental practice. On the other hand, the 
statistical dispersions are frequently used in experimental practice to estimate 
the accuracy of the experimental results, thus in practice one prefers the 
standard uncertainty relation to the entropic one. The main meaning of the 
entropic uncertainty relation can, perhaps, be seen in the theoretical field, 
e.g. in connection with information theory. From what has been said so far 
we come to the following conclusion: 

In the case of continuous probability distributions (canonically conjugated 
observables in the Weyl sense) we met profound great mathematical complica- 
tions. It was found that all states minimising standard uncertainty relations 
enhanced the entropic one. We do not know which sort this extreme is but we 
hope, according to a functional dependence of the state vectors, that the 
extreme could be minimal. It was also shown that the uncertainty sum W 
of the linear harmonic oscillator eigenstates is bound by a value not less than 
-I/11. The case of the discrete distributions (spin observables of a system with 
spin h/2) is considered more mathematically adequate than the continuous 
one according to the definition of the entropy. All the calculations were 
completed without any approximations. Contrary to the standard uncertainty 
relation the entropic one, besides the fact that it represents the uncertainty 
better, also has another advantage-it has not the standard relation's drawback 
of attaining the zero minimum. 

We wish to mention an interesting fact: In our example of the spin observable 
the extremising states are the same for both standard and entropic uncertainty 
relations and extremes belonging to them are also of the same sort. 
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Appendix 

For calculation of the integral (3.12) we begin by expressing the product 
Hp(x)Hq(x) as a linear combination of ilk(x). For that purpose we use the 
principal function of the Hermite polynomials 

e x p ( - t  2 +2t)= ~ Hn(x)tn/n! 
n=O 

d p d q 
Hp(x)Hq(x) - dr p ds q exp ( - r  2 + 2rx) exp ( - s  2 + 2sx)Ir=s= o 

d p d q 
- dr p ds q exp (2rs) exp ( - ( r  + s) 2 + 2(r + s)x)Ir=s=o 

d p d q = dP q ( 
-drPdsqf(2rs)g(r+s)lr=s=o dr-- ~ ~\q']2kr~f(k)g(q--k)lr=s=O 

k=O 

k=o I=o P ( k -  1 + 1)dr p-1 

q P p - 1  

q p p -  1 2k+tk! 
• g ( P + q - k - l - t ) ] r = s = O =  k l t F ( k - l + l )  

k=O I=0 t=O 

• g p + q - k - l -  t(x) 50, tSO,k-  1 

min (q ,p ) 

k=O 

(q)(p) k k 2kk!Hp+q-2k(x)  (A.1) 
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Ifn = p = q, we obtain from (A.1) 

[Hn(x)] z = ~ H 2 k ( x )  
k=0 

where we have used 

(:): ., 
x ! ( n  - x)! 

and have changed k by n - k. Inserting (A.2) into (3.12) we have 

k=01=0 
H2k(x)H2l(x exp ( - 2 x  2) dx 

89 

(A.2) 

1 n ~ ( : ) ( ~ ) 2 - k - l  f 
kVl v H2k+ZZ exp (--2x z) dx 

7rk=0 l=0 " " _~, 
(A.3) 

Further, by use of the principal function of Hermitte polynomials we find 
that 

f H2k + 12(x) exp ( - 2 x  2) dx 

- - o ¢ ,  

_ [ d2k+21 ; 

dt2k+2l 
exp ( - 2 x  2 - / .2  + 2tx) d@= o 

= / ~  exp (- t2/2)  = (--1) k+l 
r=o (k + 1)! 

= (-1)k+22 a+/-  U2p(k + l+ 1/2) (A.4) 

After inserting (A.4) into (A.3) and using 

(k + l + 1/2)= ; exp(-xxk + l -  1/2)dx 
o 
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the integral (3.12) takes the form 

t 
In = rr21/2 

2 ~(; ) (n)( - -1)k+t /~f  l ktl! e x p ( - x x k + l -  1/2)dx 
k=O l = 0  0 

= ~  x -1/2 exp( -x)  dx n (xne :¢) dx 

o 

if = ~ x -'/2 exp(-x[Ln(x)] 2 dx) 

o 

(A.5) 

The integral (A.5) is a special case of the integral (Gradstein & Ryshik, 1963, 
formula 7,414, 12) 

o 

P(1 + r + k ) P ( 1  + r + 3) 

(1 + r)k!k! 

+ r + 3 r + 3 .1+ r;A2/B2 ) 
- - , 1 +  2 ' 

(1 - h)  1 +rB1 +r+~ 
h=  

A2_4ala2h B=S+al+a2 l + h  
(1 - h )  2 2 1 - h  

+ a 2 ) >  0, Re s+aa  2 a t > 0 ,  a2 > 0 Re(r +/3) > -1  

i fa l  = a2 = 1, s = 0, r = 0, 3 = -1/2.  If with the last integral we also use the 
formula (Gradstein & Ryshik, 1963, formulae 9,134, 2) 

F(2a, 2a+ l - c ; c ; x ) = ( 1 - x ) - 2 a F  l a + l ; c ; ( 1  
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we obtain 

1 In = (21r) '/2 d~-  [(1 - x)-'/2F(1/2, 1/2; 1;x)] x=o 

(2rr)l/2n! P(1/2) I '(1/2) P(1/2)k! 
k=O 

-(2~1/2k~=0 (2:--2k[¢) (2k)22-2n-2k  

_ 1 ~ ( 2 - 2 k 1 2 [ 2 k 1 2 2 k  
(2zr)1/224~/c=0 ~ k / \ k ] 
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(A.6) 
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